Introduction to cotton diseases

Jason Woodward Extension Plant Pathologist Texas AgriLIFE Extension Service - Lubbock jewoodward@ag.tamu.edu; 806.632.0762

Seedling Diseases (Fungi)

- Fifteen different fungi cause seedling diseases (complex)
- Three major pathogens in West Texas:
 - Rhizoctonia solani
 - Description of the system o
 - Thielaviopsis basicola

- May cause seed decay, pre-, and postemergence damping-off (d.o.)
- Environmental conditions: 75 to 90 F with moderate moisture
 - Seed decay and pre-emergence d.o. when planted into cool soil
 - Post-emergence d.o. occurs via infection of young tissues of the hypocotyl

Symptoms:

- Sunken lesions at the soil level, resulting in girdled hypocotyl and collapse
- Fungal mycelium may be growing from lesions in wet conditions
- Mature plants rarely killed, but weakened
 - Stem girdling of older plants (Soreshin)

- Morphological characteristics:
 - Brown pigmented hyphae in culture (Top)
 - Which branch at right angles (Bottom)
 - Distinguishes from Pythium

Post emergence damping-off due to Rhizoctonia solani

Pythium spp.

- Environmental conditions: 65 to 70 F with high moisture
- Young tissue (seed and radical) are very susceptible to infection
- Seedling hypocotyl can also be infected (resembles Rhizoctonia)
- Infection is restricted to feeder roots in older plants

Pythium spp.

- Symptoms are variable and differ with age:
 - Range from pinpoint discolored spots to large sunken necrotic lesions
 - If damage is severe, hypocotyls appear girdled with soft, water soaked lesions and necrosis

Thielaviopsis basicola (Black Root Rot)

- Environmental conditions: 60 to 70 F with variable moisture
- Attacks roots and lower stems
- Seedling hypocotyl can also be infected (resembles Rhizoctonia)
- Infection is restricted to feeder root in older plants

Thielaviopsis basicola

- Infected plants exhibit stunting (B) and a severe cortical rot (A)
- Swelling of the cortex may also be observed
- Microscopic evaluations reveal distinct barrel-shaped spores (C)

Minimizing Seedling Disease Losses

Resistant varieties

Difficult to detect, based on nature of pathogens

Rotation

Depends on duration and crops in rotation

Seed quality

First line of defense (healthy seed = healthy plant)

Delayed planting

Plant in warmer soils

Fungicide seed treatments

Over-treatments and in-furrow treatments

Effect of seed treatment on seedling disease (cool wet conditions, inoculated)

"Big shank" of cotton (poor emergence under hot, dry conditions)

Symptoms of seedling disease (note water-soaked appearance)

Xanthomonas campestris pv. malvacearum (Bacterial Blight)

- Populations of the bacterium in soil serve as initial inoculum
 - Seed may also be infested
 - Acid delinting lowers populations on seed
- Environmental conditions: 25 to 30 C
- Susceptible to infection at all developmental stages
- Can cause stand losses and loss of vigor at the seedling stage

Screening for Bacterial blight resistance

- Evaluation of commercial varieties and breeding lines
- Inoculation with bacterial suspension
- Evaluation of plots based on disease reaction
 - □ Susceptible \rightarrow Resistant \rightarrow Immune

Bacterial Blight Variety Ratings

Bacterial blight (isolation and pathogenicity)

Isolation of crown gall pathogen

Verticillium wilt

- Caused by the soilborne fungus Verticillium dahliae
- Economically important disease of cotton on southern High Plains
 - Fungus infects plants early in the season
 - Systemic infections lead to the clogging of the vascular system
 - Resulting in foliar symptoms

Verticillium wilt

- Severe stunting and defoliation can occur
 - Significant yield losses
 - Reduction in fiber quality
- V. dahliae is capable of surviving long periods of time microsclerotia
 - Relationship exists between soil populations of the fungus and disease incidence

Foliar symptoms of Verticillium wilt

Foliar symptoms of Verticillium wilt

Foliar symptoms of Verticillium wilt

Stunting and defoliation due to Verticillium wilt

AgriLIFE EXTENSION

Vascular discoloration of plant infected with Verticillium dahliae note speckled appearance

Ariel image of large plot field trial illustrating differences in defoliation levels among varieties evaluated

Photo credit: Manda Catteneo, Texas AgriLife Extension Service, Seminole, TX

Management of Verticillium Wilt

- There are no corrective materials that can be applied to symptomatic plants
 - Management decisions prior to planting
 - Plant varieties with resistance or tolerance
 - DO NOT OVERWATER, use raised beds to improve drainage
 - Maintain adequate fertility levels
 - Verticillium microsclerotia survive in soil for many years in the absence of a host

Fusarium Wilt

(Fusarium oxysporum f.sp. vasinfectum)

- Found primarily in Dawson, Terry, and Gaines counties
- Confused with Verticillium or wind damage
- Hypocotyl lesions resemble Rhizoctonia
- Disease severity = inoculum density
 - Interaction with root-knot nematode (~10X increase)

Photo: Dr. Randy Boman, TCE, Lubbock

Fusarium Wilt

(Symptoms)

- Starts at seedling phase 30-40 DAP and continues through season (B)
- Chlorosis/necrosis on leaf margin (A)
- Wilt results from loss of turgor pressure
- Defoliation starts at bottom
- **Discoloration of vascular tissue (C)**

Photo: Dr. Terry Wheeler, TAES Lubbock

Photo: Dr. Randy Boman, TCE Lubbock

Photo: Dr. Randy Boman, TCE Lubbock

Initial foliar symptoms of Fusarium wilt

Initial foliar symptoms of Fusarium wilt

Advanced foliar symptoms of Fusarium wilt

Marginal necrosis associated with Fusarium wilt

Cross section of stems exhibiting discoloration of vascular tissue

Vascular discoloration of plant infected with Fusarium oxysporum f. sp. vasinfectum note continuous appearance

Mortality of cotton plants caused by Fusarium wilt

Poor stands as a result of Fusarium wilt note wide spread occurrence

Appearance of areas in the field killed by Fusarium wilt note random or aggregated patterns

Agri]

Culture characteristics of the Fusarium wilt pathogen isolated from cotton stems

Management of Fusarium Wilt

Plant a less susceptible variety

- Increase in Fusarium wilt has resulted from previous use of susceptible varieties
- Rotate with non-nematode host
- Use available nematicide to reduce damage caused by root-knot nematodes
- Minimize wounding of roots by excessive tillage operations (i.e. minimum tillage)

Nematodes

Two important species:

- Left- Root knot (Meloidogyne incognita)
- Right- Reniform (Rotylenchulus reniformis)

Photo credit: California Dept. of Food & Agriculture, Plant Pest Diagnostics Center - Nematology Laboratory, Sacramento, CA.

Photo courtesy of Dr. Jim Starr, Nematologist Texas A&M University, College Station

Root knot nematode

- Symptoms:
 - Stunted plants (Top) with chlorotic leaves and fewer bolls
 - Resembles nutrient or water deficiency
- Sedentary endoparasite
 - Females modify cells to establish feeding sites (Bottom)
 - Formation of galls for egg production (500+ eggs/female)
 - Soil may adhere to egg mass
 - Life-cycle: egg to egg 30 days

Photo courtesy of Dr. Jim Starr, Nematologist Texas A&M University, College Station

Photo: Dr. Terry Wheeler, TAES Lubbock

Severe galling on roots caused by Root-knot nematodes

Severe (right) and light (left) calling of roots infected with Root-knot nematodes

Т

Magnification of stained female root-knot nematodes in the root (left) and excised (right)

High power magnification of root-knot nematode eggs and 2nd stage juveniles

Т

Second-stage juveniles

Reniform nematode

Symptoms (similar to root knot):

- Plants are stunted, chlorotic and may wilt
- Reduced root growth
- Sedentary semi-endoparasite
 - Females invade roots (head)
 - Body protrudes from root becoming swollen (kidneyshaped)
 - Life-cycle: egg to egg in 20-30 days

Nematode Sampling

- Three composite soil samples per field
 - Twenty core samples per composite sample (~10 acres)
 - Patterns (systematic, random, zig-zag)
 - Each core from 12 inch depth
- One sample for each 1/3 of field
 - More if dealing with different soil types
- Start in September- Cost \$12.50

Nematode Sampling

For in-season sampling:

- Sampling in the middle of the season gives most representative picture
- Collect individual root or soil samples
- Selective sampling (diseased plants) is most appropriate
- Populations are highest near the root system
- Sampling of healthy plants around the area may be useful for comparisons

Nematode Management

Temik 15G has had consistent results

- Commercial standard for years; higher yields and lower gall ratings
- NO LONGER COMMERCIALLY AVAILABLE

Avicta Complete Pak more variable performance

Valid option in fields with low to moderate pressure

Aeris Seed Applied System

Comparable to Avicta Complete Pak

Seed treatments are convenient

- Increased level of consumer risk may be associated
- Sacrifice little yield for convenience
- Emphasis on resistant varieties (root-knot)
 - DP 174RF, ST 5458B2F, ST 4288 B2F, PG 367WRF, etc.

Efforts at introducing resistance genes for reniform

Breeding effort underway, currently no commercially available varieties

Nematode Management

In high risk situations:

- Vydate at pinhead square and again 14 days later
 - Only material that can be applied over the top
- Fumigation with Telone II or Vapam
 - Costly (increased interest with loss of Temik)
- Rotate with non-host
 - Peanut, sorghum, etc.
 - Yield reductions may not be evident with corn; however, does support nematode reproduction
- Cover crop selection <u>may</u> impact nematode populations

Performance of susceptible (left) and partially resistant cotton varieties

Performance of susceptible (left) and partially resistant cotton varieties

Photo credit: Manda Anderson, Gaines Co. IPM-EA AgriLIFE EXTENSION

Performance of susceptible (left) and partially resistant cotton varieties

Root-knot nematode galling on a susceptible (left) and a partially resistant cotton variety

Appearance of field exhibiting symptoms of charcoal rot (under extremely hot, dry conditions)

Symptoms of charcoal rot (under extremely hot, dry conditions)

Symptoms of charcoal rot on roots (under extremely hot, dry conditions)

Symptoms of charcoal rot on roots (under extremely hot, dry conditions)

Alternaria leaf spot

Sporulation of the fungus that causes Alternaria leaf spot

Defoliation caused by Alternaria leaf spot

Defoliation caused by Alternaria leaf spot

Defoliation caused by Alternaria leaf spot

Defoliation caused by Alternaria leaf spot (note level of open cotton bolls)

Symptoms of Alternaria stem blight (note purple coloration and circular pattern)

Initial symptom of Alternaria stem blight (note lesion developing on the leaf margin)

Sheppard's crook symptom associated with Alternaria stem blight

Severe symptoms of Alternaria stem blight

Comparison Alternaria leaf spot (left) and stem blight (right) on cotton leaves

Symptoms of southwestern rust on the upper leaf surface

Pustules of southwestern rust on the lower leaf surface (minor)

Pustules of southwestern rust on the lower leaf surface (severe)

Damage to seedling cotton caused by hail

Introduction to cotton diseases

Jason Woodward Extension Plant Pathologist Texas AgriLIFE Extension Service - Lubbock jewoodward@ag.tamu.edu; 806.632.0762