

IRRIGATION MANAGEMENT

CoST STATE

Irrigation Formulas and Conversions

Danny H. Rogers

Extension Irrigation Engineer
Mahub Alam
Extension Irrigation Specialist

Water Measurement

1 cubic foot $=7.48$ gallons $=62.4$ pounds of water
1 acre-foot $=43,560$ cubic feet $=325,851$ gallons $=12$ acre-inches
1 acre-foot covers 1 acre of land 1 foot deep; 1 acre-inch $=27,154$
1 cubic meter $=1,000$ liters $=264.18$ gallons
1 acre-inch $=450$ gallons per minute (GPM) hour or 1 cubic foot per second (cfs)
1 gallon $=128$ ounces $=3,785$ milliliters
1 pound $=454$ grams

Pressure

1 pound per square inch (psi) $=2.31$ feet of water
A column of water 2.31 feet deep exerts a pressure of 1 psi
feet of head $=\mathrm{psi} \times 2.31$
Total Dynamic Head (TDH) includes: Pumping Lift, Elevation Change, Friction
Loss, and Irrigation System Operating Pressure
TDH $=$ Lift + Elevation + Friction + System Pressure

Area/Length

1 acre $=0.405$ hectare (ha) $=43,560$ feet 2
1 inch $=2.54$ centimeters

Horsepower

Water Horsepower (WHP) - power required to lift a given quantity of water against a given total dynamic head.
$\begin{array}{ll}\mathrm{WHP}=\frac{\mathrm{Q} \times \mathrm{H}}{3,960} \text { where: } & \mathrm{Q}=\text { flow rate, GPM } \\ \mathrm{H}=\text { total dynamic head, feet }\end{array}$
Brake horsepower (BHP) - required power input at the pump.
$\mathrm{BHP}=\frac{\text { WHP }}{\mathrm{E}}$ where: $\mathrm{E}=$ pump efficiency

Power Unit Horsepower

Electric Units: approximate name plate horsepower $=\underline{\text { BHP }}$
0.9

Internal combustion units:
Must derate 20% for continuous duty
5\% for right-angle drive
3% for each 1,000 feet above sea level
1% for each 10° above $60^{\circ} \mathrm{F}$
Approximate Engine
Horsepower Required $=\frac{\text { BHP }}{\frac{0.80 \times 0.95 \times 0.91 \times 0.96}{}}$
cont. drive $3,000^{\prime} 100^{\circ} \mathrm{F}$
duty elevation

Nebraska Performance Criteria (NPC)

Energy source
Diesel
Propane
Natural gas:
925 BTU/ft ${ }^{3}$
$1,000 \mathrm{BTU} / \mathrm{ft}^{3}$
Electric

WHp-hours per unit of fuel
12.5 WHp-hrs per gallon
6.89 WHp-hrs per gallon
61.7 WHp-hrs per $1,000 \mathrm{ft}^{3}$ (MCF)
66.7 WHp-hrs per $1,000 \mathrm{ft}^{3}$ (MCF)
0.885 WHp-hrs per kilowatt-hour

Water Application

Average Application (inches) $=\frac{\mathrm{QT}}{\mathrm{A}}$
where: $\quad \mathrm{Q}=$ =Flow Rate, Acre-Inches/Hour or GPM/450
T = Length of Application, Hours
A = Area Irrigated, Acres
Set Size (Acres) is computed by the formula:
No. of Rows x Width of Row (Feet) x Length of Run (Feet)
43,560 Feet²2 /Acre

Approximate Acreage Covered by Center Pivot

Acres Covered $=\underline{(\text { Radius of wetted area, feet })^{2} \times 3.14}$ 43,560
For radius:
Without end guns - add 40 feet to length of machine
With end guns - add 75 feet to length of machine
Irrigation Delivery Rate* per Acre (gpm/acre)

Net irrigation application (inches/day)	50	System efficiency (percent)				
		60	70	80	90	100
	------------------ gpm/acre ------------------					
0.10	3.77	3.14	2.69	2.36	2.10	1.89
0.15	5.66	4.71	4.04	3.54	3.14	2.83
0.20	7.54	6.29	5.39	4.71	4.19	3.77
0.25	9.43	7.86	6.73	5.89	5.24	4.71
0.30	11.31	9.43	8.08	7.07	6.29	5.66
0.35	13.20	11.00	9.43	8.25	7.33	6.60
0.40	15.09	12.57	10.78	9.43	8.38	7.54
0.45	16.97	14.14	12.12	10.61	9.43	8.49
0.50	18.86	15.71	13.47	11.79	10.48	9.43

Field delivery rate $=$ gpm/acre x acres irrigated
Net irrigation = gross irrigation x system efficiency

Maximum Economical Pipe-flow Capacities

A rule of thumb for coupled and gated pipe:

400 gpm

Kansas State University Agricultural Experiment Station and Cooperative Extension Service

